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The clwical hydrodynamical problem of a body submerged beneath a free surface 
is considered. The flow is two-dimensional and the cross-section of the body and its 
motion are arbitrary. In  the limit as a typical body dimension becomes small 
compared with its depth the method of matched asymptotic expansions becomes 
applicable and expressions for the forces and moment experienced by the body can 
be found. Several cases are considered in detail where the body is permitted to move 
in response to the forces and moment. We also find the additional forces, due to the 
free surface, experienced by a lifting body - a body about which there is a circulation. 

1. Introduction 
The history of the problem of surface gravity waves in the presence of submerged 

bodies begins with Lamb (1913) whose two-dimensional solution for the velocity 
potential for a fixed circular cylinder in a uniform stream satisfies the linearized 
surface conditions and wumes  the cylinder to have shrunk to a point. Havelock 
(1927) later extended this solution, finding a further term in the limit aa the circular 
cylinder becomes small. Havelock has also considered bodies whose surfaces may be 
described by the streamlines due to a distributiongf sources and sinks placed in a 
uniform stream (Havelock 1926, 1928a,b, 1931). 

The problem of the fixed circular cylinder of arbitrary size waa considered by Dean 
(1948) and Ursell (1950). Dean showed that, in the linearized theory of small- 
amplitude disturbances, for a wave incident on a fixed submerged circular cylinder 
of arbitrary size, there is no reflected wave and the only effect at large distances from 
the cylinder is that the transmitted wave experiences a phase shift. The method 
employed was the conformal mapping of the flow region, excluding the cylinder, onto 
an annulus. The boundary condition at the cylinder now becomes too difficult for an 
analytical study and Dean turned to numerical calculation. 

Ursell’s method of solution involved placing systems of multipoles at the centre 
of the cylinder and solving for the strengths of these by two infinite sets of 
simultaneous equations arising from the boundary conditions on the cylinder. 
Uniqueness of the velocity potential is proved for any smooth boundary condition 
on the circular cylinder. 

Ursell’s method waa employed by Ogilvie (1963) who permitted the cylinder to 
move sinusoidally in time with small amplitude. He assumed an expansion in terms 
of a small parameter and found the first-order oscillatory and second-order forces. 
Ogilvie also showed that only the first term in the outer solution is needed when 
calculating the time-averaged mean forces on the cylinder to second order. The 
oscillatory component of the second-order force does depend on the second-order 
potential. 
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Other submerged two-dimensional bodies have also been considered. For example, 
Evans (1970) considers the submerged vertical plate. He cites the experimental work 
of Keulegan & Carpenter (1958) on the formation of eddies behind bodies in 
oscillatory flows as the justification for assuming a potential flow. 

More recently Thomas (1981) has extended the work of Ogilvie by the inclusion 
of a power take-off mechanism and hence considers different equations of motion for 
the circular cylinder’s response. The mean vertical force is calculated and is found 
to act downwards for certain tunings of the take-off mechanism. Grue & Palm (1985) 
consider the radiative and diffractive effects of an oscillatory circular cylinder with 
both incident waves and uniform current. This work generalizes the result of Dean 
to find conditions for the reflection of the incident wave by a submerged circular 
cylinder. However, a direct comparison between this and the work to follow is not 
possible since the two cases involve different parameter regimes-Grue & Palm 
(1985) consider the uniform translation and the oscillation to be of the same order 
whereas here the oscillatory motion due to the incident wavetrain will be of smaller 
order. 

In  this paper we shall be concerned with finding the forces and moment experienced 
by a cylinder of general cross-section moving arbitrarily beneath a free surface. In  
particular we shall be interested in finding the body’s response to such forces. In  the 
limit as a typical body dimension becomes small compared with its depth the method 
of matched asymptotic expansion becomes applicable. 

In 92 we state the mathematical problem which is then non-dimensionalized and 
scaled. The inner and outer potentials are described. 

In  93 we use complex variables to describe the potential flow past a smooth 
two-dimensional body of arbitrary cross-section assuming that the conformal trans- 
formation which maps the body onto the unit circle is known. We then proceed to 
match the inner and outer potentials. The forces and moment acting on the body 
are found using Milne-Thomson’s extension of Blasius’ theorem (Milne-Thomson 
1938), and specific examples considered: first the circular cylinder with forward speed, 
which is permitted to move in response to the forces it experiences; secondly, the 
motion of a body that is freely pivoted at its centre of mass; and thirdly, a neutrally 
buoyant body without forward speed that is free to respond to the forces and the 
moment. 

In 94 we examine small, submerged bodies around which there is a circulation, the 
inner potential for which is then found. We next find the outer potential due to a 
vortex by introducing a delta function into the linearized momentum equation, and 
find the additional force on the body due to the free surface. Finally, we consider 
the particular example of a hydrofoil started impulsively from rest. 

2. The mathematical statement of the problem 
The problem is in two space dimensions only and the flow is assumed inviscid, 

incompressible and irrotational so that there exists a velocity potential $. Let h be 
a typical depth of the submerged body, a a typical dimension of the body, and P 
a typical frequency of the motion. We shall take l/P to be the timescale of the motion 
of the submerged body (for example, when moving with constant velocity the speed 
of the body will be ah) except when i t  is without forward speed, in which case Q 
will be taken to be the frequency of the incoming wavetrain w .  

The amplitude of the incident wave potential will be taken to be 6(h3g)k In  this 
problem there are four dimensionless parameters a/h ,  Q2h/g, o/Q and 6. In order to 
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make progress analytically we take the wave amplitude to be small so that 6 4 1 and 
also insist that a / h  4 1 ; the dimensions of the body are therefore much less than its 
depth. Both Q2h/g and w / a  will be taken to be O(1). 

We shall seek asymptotic solutions in terms of the parameter s = a/h,  in two 
regions: the inner region, the neighbourhood of the cylinder at distances of O(a),  and 
the outer region, O(h) distance away from the cylinder. Between the two regions the 
asymptotic matching principle must be applied. 

Let the origin of axes fixed in space be a t  the typical depth h, with the y-axis 
vertically upwards. At time t the centre of mass of the body with respect to these 
axes is at (&), [ ( t ) )  and the elevation of the surface above y = h is q(x ,  t ) .  

The variables are made dimensionless in the following manner: q5 = ah*$, I = hF, 
7 = h7, t =t/a, fs = @and c =  hr. 

The usual surface conditions of conservation of m a s  and momentum become 
- - 
q5g = ?jc+ &?jE on jj = 1 +?j, 

and 

respectively . 
Coordinates moving with the body are defined by 2 = T-5, d = jj-r. 
In considering the inner region the variables 2 and y’ must be rescaled by putting 

r“ = er’ and now the dashed variables are O(1) in the vicinity of the body; these are 
the inner variables. The outer potential will still be denoted by 3 but the inner 
potential is now 9’. The inner potential must satisfy the condition of no flow normal 
to the body surface. 

We shall now discuss the relative orders of 6 and s. The disturbance at the surface 
due to a small body with dimension sh at depth h is equivalent, to lowest order, to 
a submerged dipole and if the Froude number B(h/g)f, is O(1) then the disturbance 
at the surface is O(s2). However, the nonlinearity in the boundary condition is 
quadratic in the incident amplitude, that is, of O(P) .  With the choice 6 = As with 
A = O( 1) these two effects are of the same order of magnitude. At  the same time the 
motion of a neutrally buoyant body in response to incident waves is over distances 
of the order ah, so with our choice the motion is of the order of the body dimensions. 
This results, in certain situations to be discussed later, in a nonlinear problem for 
the body response. Of course, other choices for S are possible and may be considered 
in future work. 

We shall now look for asymptotic expansions of $, q5‘ and ?j in powers of s: 
- - 

q5 - €& + . . . , 
The first-order outer potential is now the incident sinusoidal wavetrain potential 
given by A(g/S22h)fe-hkehkg COB (hi%+ (w/dh)t )  where, to lowest order, we = gk. In 
the above expansions we have not explicitly included log 6 terms which may appear. 
This is for two reasons: (i) we do not know a priori at which order they will appear; 
and (ii) care must be taken to asymptotically match all terms with the same algebraic 
order at the same time (Fraenkel 1969). 

Although we are considering a two-dimensional problem we do not expect the 
appearance of logarithmic terms in the perturbation parameter s when there is no 
circulation about the body, since these will only be caused by a net source of fluid, 
which we do not consider, and which occurs, for example, in slender-body theory. 
In $4 we shall examine a body with a sharp trailing edge and which will therefore 
have a circulation set up around it; in this case we shall allow for logs terms. 

q5’ - €6; + szq5; + . . . , q - q1 + szqz + . . . . 
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In moving coordinates the surface conditions become, on being transferred to 

where 3 = so+$,+ ..., and f = <,+ef,+ ..., and where h2 = q/Q2h and the dot 
denotes differentiation with respect to  1. Note that the expected right-hand side 
quadratic in 3, and 7, is identically zero for a regular sinusoidal wave (Stoker 1957). 

' 

The problem in the outer region is 

Va$, = o for -m < d < 00, y" < i-z,, (2,~") + (o ,o)  
subject to (1), where 3, is also to match with the inner potential and is to satisfy an 
initial condition or the radiation condition of outgoing waves only. 

The inner problem is v"; = 0 

subject to the body boundary condition and matching with the outer potential. 
Henceforth all overbars and tildes will be dropped and the outer potential will be 

in terms of moving coordinates. We shall retain the dashes to distinguish inner 
variables. The inner problem will now be considered in the complex plane, where 
overbars denote complex-conjugates. 

3. Smooth bodies 
3.1. The inner and outer potentials 

We shall now calculate the inner and outer potentials in the case of a body about 
which there is no circulation. The body will be represented by a non-singular 
conformal mapping. 

Define the complex variable s' = z'+iy'. It will be assumed that the unit circle 
can be conformally mapped onto the body by the transformations s' = eiy(t)s and 
s =f(w), where y is the angle between the z' axis and a line fixed in the body. The 
origin of the s-plane is at the centre of mass of the body and the points at infinity 
of the 8-plane and w-plane coincide ; that is, s - a_, w + a, + al/w + a2/wa + . . . aa 
IwI-+m where a_, is real and positive. It is also necessary that dfldw(w) 8 0 for 
Iwl> 1. This includes the requirement that the body has no sharp edges and that 
there exist potential flows past the body without circulation and with finite 
velocities everywhere. 

Define N(w) = f(w)J((w-'). Expanding N(w) in a Laurent expansion in powers of 

where Nl contains the negative powers. The complex potential for a rotation of the 
body in an infinite fluid at rest at infinity is then given by 

iY(t) N,(W) 

(Milne-Thomson 1938). Therefore when the body is also translating in an infinite fluid 
the complex potential in scaled variables is 

where I ,  = (i+ it) e-iY. 
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in inner Expanding the firsf-order outer potential (the incident wavetrain 
variables gives 

where 
#, N Re {H, + ela s+ saJ3 sa + c3x4 e3+ . . .}, 

la = iAA(hk) exp{ -hk+hk[+i 

J3 = -!glA(hk)4exp{ 

K4 = -&4A(hk)8 exp{ -hk+hk[+i and 

The term involving H, contains no 8-dependence and will therefore give rise to a 
uniform pressure around the body and hence no force or moment. We shall henceforth 
drop all such terms. Note that in I, J and K we have not expanded 5 and C in powers 
of E ;  this could have been done to keep the expansions consistent (and will be done 
in later sections as necessary), but this would only serve to further incream the length 
of the expression for W, without adding to the understanding of the source of each 
term in the expansion. 

The inner complex potential W(w) will contain both W,(w) and terms due to 
matching with 4, and $a,'etc. To determine the inner limit of #z we expand W, in 
outer variables to give " 

as )x+iy)+O. 1 4% N x+iy 
a_, eiy(I1 a, - 1, a-,) 

Again there will be a term that contains no s-dependence and that can therefore be 
ignored. 

Therefore #a is to match with a dipole at  the origin. This may be achieved by solving 

where 6 is the Dirac delta function and 

a + ib = 2na-, eiy(ll a, - I, a-,), 

subject to the surface condition (1). The solution to this problem may be found by 
Fourier transform, giving 

where B(e,,t) is a known function which can be found in the Appendix, and the 
inversion contour C, is chosen so that #, satisfies the radiation condition. 

Matching with the inner potential then proceeds by expanding the non-singular 
part of in inner variables to give 

{€T3 8-k €*J4 S*+. . .} 
(again the function of t  alone has been dropped), where 

and 
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We do not h d  #, since its effect on the forces on the cylinder first appears at O ( k )  
through the #I term in Bernoulli's equation, which is of smaller order than the terms 
that we shall calculate. 

The matching now proceeds in a straightforward manner to give the inner complex 
potential to be 

+ 2a, z3 + 2 a ~  a_, 1, w +a+ a:, 5, w2+ - a- I a!, J3 

W W2 W 

W2 

a?, J4 a?, K4 
W2 w3 

u"J4 w2+- +a?, rr, w3 + - + 3u, a!, K4 w2 + 
+ O(e4) linear flow term + O ( k ) .  

3.2. The forces and moment 

Since we have found the potential in the neighbourhood of the body we may apply 
Milne-Thornson's extension of Blasius' theorem (Milne-Thomson 1938) to fmd the 
forces and moment that the body experiences. We shall not include the hydrostatic 
buoyancy forces and moment in our analysis. In  dimensionless, scaled, inner variables 
the forces are given by 

a { [ W-dw +pQ2hS([-i[), + ipQ2h3e - e-iy 
ds 'I at wI= 1 dw 

where S is the cross-sectional area of the body (O(e2h2)), and an overbar denotes 
complex-conjugation. 

The potential W(w) may be substituted into this expression and the forces 
evaluated to O ( k )  to give 

Fz- iFy - e22np02h3 {([-it) (--a!, +a_, Z, e-2'y([+ it- 2i j ( t+ it))} 
2ns2h2 S ,  

+e32npQ2h3{ -iia-,6, e-'y(y-ij2)-2u-, e- 'y~~(a-,e 'Y(~+i~)-a,  eiy(g-i()) 

+a_,- (e-i7(u-lT2-Zl I,)) +e42npQ2h3 6uZ, u2x4(8-it) 

-2e+a-,(J4 + 3u,X4) b , J 3 y  

+ a_, - (e-'Y(a-, 7, -a, I, - ZE, a, J3 + 2a-, a, J3 + 2a-, Z2 J , ) )  

I { 
a 
at 

a 
at 

+ 2a-, e- 'y~~(a-,  1,- a, I ~ ) }  + 0(e5), (3) 

where b, is the coefficient of l / w  in the expansion of N,(w). The terms in this 
expression fall into three categories: (i) those terms that do not contain 12, I,, J3,  J4 
or K4 explicitly and that would therefore be present in the absence of a free surface 
(including added mass); (ii) terms linear in 12,13, J3, J4 or K4 that represent an 
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interaction between the motion of the body and the waves (both the incident 
wavetrain and the waves created by the motion); and (iii) terms quadratic in I, and 
J3 representing a nonlinear self-interaction of the incoming wavetrain. 

Similarly, the moment anticlockwise is given by the real part of 

which becomes the real part of 

e22npS12h4{ -ia_,ale2iy(~-i~)2}+F12Xpl;)th4{a-, b, eiYY(%-it)+ u-,- a (eiYF-l(g-it) 
at 
- 
d8 - sN - dw dw + e-'Y z(g+ i t))  + 2ia-, a, e'Y(g- i t)  12)} + e42npQ2h4 {G i; [ 

WJEl 

where 

The forces and moment on an arbitrarily moving two-dimensional body beneath 
a free surface with an incident wavetrain have been found. We shall now consider 
several specific examples. 

3.3. The circular cylinder 

The expression for the forces on the general body may be written in terms of 
hypergeometric functions as an instantaneous force plus a term that is dependent 
upon the history of the motion. Some simplification occurs when the body has circular 
cross-section. We shall first consider the cylinder to be constrained to move at 
constant speed and at constant depth. The assumption of potential flow cannot be 
justified in this case since there will generally be separation of the flow at the rear. 
However, the results in this section are expected to be in qualitative agreement with 
the equivalent results for slender submerged bodies where the assumption is more 
realistic. 

The expressions for the forces become 

F! - 7@2'h3{ -82AA(hk)e-** cos ( hkt+-t 3 -e44xA3e-2**+0(I+)} 

and 

Fg - npQ2W3 { - e22AA(hk) e-hk sin hkt + - t ( 3 
+ 2E4[A2A2 e-2hhk(hk)3-a-92- A4 + 2A6 e-2A2 Zi(ed2)] + .(I+)}. 

The above contains the wavemaking drag and lift found by Havelock (19283), plus 
the forces due to the incident wavetrain. Figure 1 shows the mean upward force F , 
against dimensional velocity Slh, in the case k = n/150, e = 0.02, h = 50, A = (3/nj. 
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FIQURE 1. Mean upward force versus forward velocity for constrained circular cylinder: k = ~/150, 
e = 0.02, h = 50, p = lo00 and A = (3 /x) t .  Broken line, wavemaking force; full line, total force. 
There is symmetry about the vertical axis. 
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FIQURE 2. Mean upward force versus forward velocity for a neutrally buoyant circular cylinder that 
is free to respond: k = x/150,e = 0.02, h = 50, p = lo00 and A = (3/& Broken line, wavemaking 
force; full line, total force. 
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The forces experienced by a responding body have received less attention in the 
literature than those experienced by a restrained body. If the cylinder is neutrally 
buoyant and is permitted to respond to the first-order oscillatory forces so that we 
must solve linear ordinary differential equations for the cylinder displacement 
(assuming that the perturbation to the depth due to the response is small compared 
with the depth), the result is that 

and then the forces become 

- 8AA(hk) e-lrk 0 cos - e42xA3 e-2A’ + O(8) D 
and 

F’ - xpQ2hs { - $AA(hk) e-hk 2 sin (hkI4 51 

-;-4A2-A4 + 2A0 e-2A’ Zi(eaAa) + o($) . I 1  2w/D + hk 
(hk + w/Q)* 

X 

Figure 2 shows the mean contribution to the upward force against velocity, also in 
the case k = x/15O,c = 0.02, h = 50, A = (3/n)t. The above is only valid provided 
Ink+ (w/D)I B d. When Ihk+ (w/D)l = O(d) the first-order forces are slowly varying 
with period O(6-f) and the cylinder will then be perturbed about its mean depth by 
an amount of the same order as the depth. In this case the problem for the response 
of the cylinder becomes nonlinear. Such a situation represents a motion of the cylinder 
with the same speed as the phase speed of the incident wavetrain and in the same 
direction. When it occurs with surface ships it is known as ‘broaching’ and can lead 
to loss of control of the ship. Since the effect is due to the cylinder being at the same 
point beneath the wavetrain for long periods of time so that the first-order oscillatory 
forces become slowly varying, then bodies of arbitrary shape in two or three 
dimensions will respond in a qualitatively similar manner. 

3.4. Torque on a pivoted body 
We now return to the general case of a cylinder of arbitrary cross-section. 

Experiments carried out by Keulegan & Carpenter (1958) indicate that the 
parameter xd/2a, where d is the distance travelled by a fluid particle during a 
half-cycle in the absence of the body and a is a typical body dimension, is important 
in determining the amount of vorticity shed by a submerged body without forward 
speed. In our notation xd/2a = xA(hk)ie-hk. For a circular cylinder complete eddies 
do not form for xd/2a < 15 and for a flat plate the number is 1. This and the following 
section may therefore be justified provided that the body does not have a rapidly 
turning tangent at any point or that IcA(hk)ie-hk is sufficiently small. 

The equations of motion for the response of a neutrally buoyant cylinder are 
nonlinear. Much simplification occurs if the body is pivoted at its centre of mass, that 
is 5 = C = 0, in which case the moment is given by the real part of 
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If the body is allowed to respond to this moment then the equation of motion becomes 

where 

K being the radius of gyration of the body with respect to the centroid. Substituting 
the known expression for I, and putting y = t + yl(t) gives a second-order autonomous 
ordinary differential equation in time for y,. A phase-plane analysis of this equation 
shows stable equilibrium points at y1 = a, +$x, p1 = 0, where tan 2a, = -arg (al) for 
n = 0,1,2 or 3 modulo 4 (depending upon a-l, Z'-,,P,). The motion of the body 
therefore consists of a uniform rotation plus a damped oscillation. 

When the body is in a stable motion with y = t+a,+&nx the inner potential is 

W(w) - -s2iNl + c2a-, (1, w +:) + 0(8), 

. 

where I, = - iAA eVhk(hk) e-i(ao+fnn). Expanding W(w) for large ls'l we find that 

as r + o ,  
4 3  2x(22+y2) 

where a + ib = 2x[ - ia-, b, +a_, I, -al T2] exp {i(t + a, +?jnx)}. 

Since I, is independent of time, q53 matches with a harmonically time-varying dipole 
of strength 

la-, b, + Ah e-"&(hk) {a_, e-i(oro+fnn)+al ei(uo+fnK)}I. 

It is a simple matter to show that waves produced by such a dipole travel only to 
the left. Therefore there are no reflected waves to O(e3) from a two-dimensional body 
that is pivoted at its centre of mass when in a stable periodic motion. 

3.5. Neutrally buoyant cylinder 
Next, we shall remove the restriction, imposed in the last section, that the body is 
pivoted at its centre of maas, and consider the response of a neutrally buoyant 
cylinder of general cross-section having zero forward speed. The problem for the 
response can be represented by three coupled ordinary differential equations for the 
three degrees of freedom - these equations consist of two parts: the forces and 
moment caused by the rotation and translation of the body, which would be present 
in an infinite fluid; and the forces and moment due to the incident wavetrain. 

Since the amplitude of the response will be of O(s) the coordinates of the centre 
of mass are further scaled by writing = E& and 5 = €5,. To lowest order the 
expression (3) for the forces becomes 

F,-iF, - ~ ~ 2 x p w ~ h ~ { ( [ , - i [ , )  +a~l~le-2 i~( [ l+ i [ l -2 i~(& +it,)) 
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and the moment (5) becomes the real part of 

We may seek a periodic solution for the motion of the form 
5, + il;, = d eit, y = yo+ t ,  where d and yo are constants, representing a harmonic 
response with the same period as the incident wavetrain. Substitution into the 
above rescaled equations and equating with mass times acceleration and angular 
acceleration respectively yields 

where 6, = AA(hk) e-hk. The latter equation has .two, three (with two coincident) or 
four real solutions for yo (0 6 yo < 2x) depending upon whether the complex number 
&fin b,/(S, aila,lt) lies outside, on, or inside the curve given in the argand plane by 
za-3z-', where lzl= 1. For each yo there is a corresponding orbit for the body. The 
stability of the orbits may be determined by considering a small unsteady 
perturbation to the steady solution. However, since the algebra involved in such an 
analysis is complicated we shall not address that question here. Three examples will 
now be given. 

(i) b, = 0. For a body with b, = 0, for example an ellipse, the radius of the orbit 
is 8,. The body will then follow the same path, to firat order, as the fluid particle at 
its centre in the absence of the cylinder. Ogilvie (1963) has found this result for a 
small neutrally buoyant circular cylinder; here we have shown it to be true for a wider 
class of bodies. 

We now have Re{ic!,a,eriYo} = 0 and so there are four roota for yo, being 
-0.5 arg(a,)+$++x,n = 0,1,2,3. 

(ii) a, = 0. When a, = 0 we have d = 8, + b, eiYo/a-, with Re {2ib, eiYo} = 0. There- 
fore, there are two solutions for yo, -arg (b,) ++x + nx, n = 0 , l  with d = S, f Ib,l/a-,. 

(iii) We shall give as a final example a body with both a, and b, non-zero. When 
S, = 1.0 and a_, = l,a, = (1/22/2) (1 +i), a, = O.l,a, = O,n 2 3 and a, is chosen so 
that the centre of mass is at the origin, the amplitudes'of the orbits (which have been 
computed numerically from the equation for yo) are 0.900, 0.977, 1.048 and 1.089. 

4. Lifting bodies 
In  this section we shall relax the constraint imposed in 93 that the body has no 

sharp edges : We shall consider those bodies with df/dw = 0 at some point on Iwl = 1, 
say w = - 1, so that when the body is moving steadily a circulation will be set up 
around the body of such a magnitude that the velocity at this 'trailing edge ' will 
be finite. A simple model (Crighton 1985) for the unsteady motion of the 'hydrofoil ' 
is that the circulation must change with time so that the velocity at the trailing edge 
always remains finite - the unsteady Kutta condition. Since the circulation about the 
hydrofoil is changing with time vorticity will be shed creating a wake of two- 
dimensional vortices emanating from the trailing edge. 

I6 FLY 176 
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We shall find i t  necessary to assume a position for this wake that may not be its 
true one. In  so doing we limit the accuracy to which our solution is valid. If we wish 
to find two terms in the inner expansion that contain expressions due to the wake 
then we need to know the position of the wake to O ( E )  distance (in dimensionless 
variables). Unfortunately, surface waves of amplitude O(s)  have an O(s) velocity at 
an O(1) depth; therefore we cannot include such incoming waves. Similarly, if the 
circulation about the hydrofoil is O(E)  then distortion of the wake due to interaction 
with itself will again be O(s). Therefore, we shall only consider the motion of a small 
hydrofoil at small angle of attack, which can at most be O(E) ,  beneath an otherwise 
calm surface. 

4.1. The inner potential for a lifling body 
First consider the motion of the hydrofoil in an infinite fluid. 

Let the strength of the circulation around the aerofoil be f ( t )  (this is called the 
bound vortex, aa yet unknown), than at time u the aerofoil sheds a vortex of strength 
-f(u) 8u. At time t this vortex will be at s;(t, u) in the 8' plane and at w,(t, u) in the 
w-plane. By Milne-Thornson's (1938) circle theorem the complex potential due to such 
a vortex is 

therefore the potential due to the wake from time to is 

aasuming T(to-) = 0. 

surface is now given by the real part of 
As in 93 the inner, non-dimensional potential for attached flow beneath a free 

e2i w-w* 
W - +s2ijNl(w)+-j f2(U) In{ i -z*w }du 

W 2 A  to- 

where Il = (i+i$) e-iY and I, comes from matching with the outer potential #*. To 
define f, and f, uniquely we shall invoke the Kutta condition of regular flow in the 
vicinity of the trailing edge. Note that the condition of O(s) angle of attack becomes 
11-11 = O(s). We shall approximate the position of the wake by the path of the 
trailing edge (and this approximation improves aa the hydrofoil becomes thin and 
as the angle of attack tends to zero) and so 

where e(u) = eiy(")f( - 1) (the s appearing because in inner variables the centre of the 
hydrofoil is at (l/s) ( [ ( t ) ,  [(t)). 
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If we denote the inverse of the transformationf by (fl), that is, (f-l) (f(w)) = w; 
then the inner complex potential becomes 

+e3a-, 13w+- +O(e4). [- 21 
The integral may be split up into two parts, from to- to t - u and from t - u to t where 
E 4 u 4 1. The integral may then be expanded asymptotically for small E and hence 

(H(u)  being the'unit Heaviside function), provided t-to 4 1 / ~  or r, = 0 (otherwise 
a slight modification is needed). Because of the appearance of a Ins term in the above 
we introduce a 'switchback' term (Lageratrom & Caten 1972) - 8 / 2 ~  ln E ir3Jt) In w 
in order to satisfy the Kutta condition. 

16-2 
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4.2. The outer potential due to a lifling body 

We may expand the inner potential (6) in terms of the outer variables; in so doing 
we find that the outer potential 4, must again match with a dipole of the same 
strength as in $3, as well as a vortex of strength T2(t) located at (0,O) in outer, moving 
coordinates. We have already stated that matching with a dipole may be achieved 
by a delta function in the continuity equation. It’is possible to match with an 
unsteady vortex and its associated trailing wake by introducing a delta function of 
the correct strength into the linearized momentum equation, that is 

(7) 1 
VP 

4t-tqz-&Iy = --+r,(t)&X)S(Y) tk, -!9, 
P 

v-q = 0, 

where q is the velocity of the fluid, since the combination of a uniform flow and a 
circulation produces a force on the body normal to the flow and hence a force on the 
fluid in the opposite direction. 

We may solve (7) subject to the boundary condition (1) by Fourier-transform 
methods and the solution for the potential is found to be of the form 

D(s , , t )  exp{-iis,x-lsll y}dsdu, 
1 

+2x s,, 
where D(sl, t )  may be found in the Appendix and C, is chosen to satisfy the radiation 
condition. 4, is therefore the sum of the above and (2). 

In order to find I3 we must match the inner and outer potentials to O ( 8 )  in inner 
variables (details will not be included here, however). We find that 

It now remains to find the circulations f , ,  f 3 ,  and f 3  by applying the Kutta 
condition. By insisting that d Wldw = 0 at w = - 1, the trailing edge, we may equate 
powers of e to find the values of the circulation. Once this has been done we may 
uae Milne-Thomson’s extension of Blasius’ theorem to find the forces and moment 
on the hydrofoil as in $4. However, since the resulting expressions are rather 
complicated and unwieldy we shall be content with finding the additional forces on 
the hydrofoil that are due to the presence of the free surface. Such forces first appear 
via r3 terms, which depend on I, through the Kutta condition, and are due to the 
downwash at the hydrofoil caused by the free surface and are therefore simply 

Fz- iF’ - 4ni8pS12h3((- it) Im13 + O(e*), 

this being true even for large t - t o ,  provided the integrals in l3 exist. 
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4.3. Impulsive start from rest 
We now consider a specific example when a flat-plate hydrofoil is impulsively started 
from rest a t  time to = 0 with a fixed angle of attack q0. Therefore f(w) = w+ l l w  
and &t) = H(t), 5 = 0. Now I ,  = e-'% and so to O( 1) a+ib = 0. The Kutta condition 
to lowest order becomes 

Hence, from (8), for t > 0, 
r2 = 4xy0H(t). 

+2y0i (sl+lsll) exp( -21sll-is,t) r ei8U[cos{A~s,~~(u-t)}-l duds, 
0- 1 

where C, may be taken from -00 to + 00 along the real s1 axis. 

- 2iYo I3 = 2y0+-+4y, 81e-281 - 
t-21 { S f 2 ' S l  

Therefore, the additional lift due to the free surface is 

In  {he limit at t+ a0 this additional lift becomes 

16x2c3p9*h3y0 A2 e-2n'. 

5. Conclusion 
The method of matched asymptotic expansions has been successfully applied to 

the problem of a two-dimensional body of general cross-section moving arbitrarily 
beneath a free surface in the limit as the ratio of a typical body dimension to its depth 
becomes small. When the body is smooth, so that there exist regular potential flows 
about it with no circulation, we have found three terms in the asymptotic expansions 
for the forces and moment (the lowest-order forces and moment are not affected by 
the free surface). We have considered several cases where the body has been permitted 
to respond to  the forces and moment acting upon it. For example, when a uniformly 
translating circular cylinder responds to the forces it is found that the mean forces 
on the body are singular when the cylinder velocity and wave speed are the same. 
The waves created by a non-circular body pivoted at its centre of mass are considered 
and it is found that the amplitude of reflected waves is of lower order than might 
be expected. The restriction on the centre of mass is then removed and the amplitude 
of the oscillation of the body is determined. When the body has a sharp trailing edge 
a circulation is set up and so the outer flow will contain a point vortex. This vortex 
has been modelled by a delta function (point force) in the momentum equation. The 
additional force due to the presence of the free surface has been found and has been 
evaluated for an impulsive start of the body from rest. 

The author would like to thank Dr A. J. Musker for suggesting the original 
problem. I am also indebted to Dr J. R. Ockendon for many useful discussions 
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and the Science and Engineering Research Council and the Admiralty Research 
Establishment for financial support. 

Appendix 
The solution of the boundary-value problem 

(which may be found by taking the Fourier transform in 2) is 

ux+by 1 +- B(sl, t )  exp {-isl 2- Is1( y} ds, 
$2 = 2x(22+ y2) 2A I,, 

where 

+ IsiI b(u)} exP 6% E(u) + Is11 S(u)} sin (AIgJi (u-t)) du, 
and C, is chosen to satisfy the radiation condition. The time at which motion begins 
is to, possibly minus infinity and lsll is defined to be lim, (8; + v2)!, with branch cuts 
along the imaginary axis such that (8; + v2)i has a positive real part in the whole cut 
plane. Similarly, the solution of 

st-k,-k, = - -+ r , ( t )42 )4Y)  VP t i ,  -h 
P 

divq = 0, 

with 

where q = V+2 in the neighbourhood of the surface, y = 1 -5, can be found to be 

where 

x t d ( 4  1811 4 4  811 exp {is, 5 w  + 1% la41 du. 

These two potentials may be considered to consist of multipoles along the image 
in the free surface of the path of the submerged body, although this interpretation 
is not unique. 
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